Mitochondrial Stress Engages E2F1 Apoptotic Signaling to Cause Deafness

نویسندگان

  • Nuno Raimundo
  • Lei Song
  • Timothy E. Shutt
  • Sharen E. McKay
  • Justin Cotney
  • Min-Xin Guan
  • Thomas C. Gilliland
  • David Hohuan
  • Joseph Santos-Sacchi
  • Gerald S. Shadel
چکیده

Mitochondrial dysfunction causes poorly understood tissue-specific pathology stemming from primary defects in respiration, coupled with altered reactive oxygen species (ROS), metabolic signaling, and apoptosis. The A1555G mtDNA mutation that causes maternally inherited deafness disrupts mitochondrial ribosome function, in part, via increased methylation of the mitochondrial 12S rRNA by the methyltransferase mtTFB1. In patient-derived A1555G cells, we show that 12S rRNA hypermethylation causes ROS-dependent activation of AMP kinase and the proapoptotic nuclear transcription factor E2F1. This retrograde mitochondrial-stress relay is operative in vivo, as transgenic-mtTFB1 mice exhibit enhanced 12S rRNA methylation in multiple tissues, increased E2F1 and apoptosis in the stria vascularis and spiral ganglion neurons of the inner ear, and progressive E2F1-dependent hearing loss. This mouse mitochondrial disease model provides a robust platform for deciphering the complex tissue specificity of human mitochondrial-based disorders, as well as the precise pathogenic mechanism of maternally inherited deafness and its exacerbation by environmental factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury

Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...

متن کامل

Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1G93A mouse model of Amyotrophic Lateral Sclerosis

Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old)...

متن کامل

An E2F1-dependent gene expression program that determines the balance between proliferation and cell death.

The Rb/E2F pathway regulates the expression of genes essential for cell proliferation but that also trigger apoptosis. During normal proliferation, PI3K/Akt signaling blocks E2F1-induced apoptosis, thus serving to balance proliferation and death. We now identify a subset of E2F1 target genes that are specifically repressed by PI3K/Akt signaling, thus distinguishing the E2F1 proliferative or apo...

متن کامل

Tumor and Stem Cell Biology FOXO Transcription Factors Control E2F1 Transcriptional Specificity and Apoptotic Function

The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction ofmultiple apoptotic genes.We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-mediate...

متن کامل

A role for 14-3-3 tau in E2F1 stabilization and DNA damage-induced apoptosis.

Genotoxic stress triggers apoptosis through multiple signaling pathways. Recent studies have demonstrated a specific induction of E2F1 accumulation and a role for E2F1 in apoptosis upon DNA damage. Induction of E2F1 is mediated by phosphorylation events that are dependent on DNA damage-responsive protein kinases, such as ATM. How ATM phosphorylation leads to E2F1 stabilization is unknown. We no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 148  شماره 

صفحات  -

تاریخ انتشار 2012